Modeling Hair Movement with Mass-Springs

Anna Sokol
ansokol@cs.sunysb.edu

Computer Science Department
SUNY Stony Brook

Abstract: This paper is presenting a
framework for modeling hair movement
using mass-springs. This framework will
support dynamic simulation, movement,
and graphical rendering of hair and
simulate different types of hair from very
curvy to straight, from very short to very
long, from very thin to very thick, and from
very dense to bolding. It will also simulate
different affects forces have on hair from
wind, gravity, and damping. Each
individual strand of hair will be modeled
as a twisted NURBS cylindrical surface
with n control points.

1 Introduction

Realistic hair simulation has been a
huge problem due to its incredible
complexity. For example, a human head
can have over 100,000 individual strands.
The simulation of long and/or curly hair
creates even more complexity. Animating
hair in real-time is a challenging problem
due to the high number of primitives
required to model hair accurately and
realistically.'

While movies like Monsters, Inc. and
Final Fantasy have been able to generate
very realistic looking hair and fur, they
weren’t done anywhere near real time.
Modeling, styling, simulating, and
animating hair remains a slow, tedious, and
often a painful process for animators.'

In this paper, I propose to model hair
movement with mass-springs and to model
hair with twisted NURBS cylindrical
surfaces. The hair is rendered in almost
real time. The more hair the slower the
system works. The hair can look short or

long, curly or straight, thin or thick, and
messy or combed.

Each individual strand of hair will be
modeled as a twisted NURBS cylindrical
surface with n control points. One end of
each hair strand will be fixed on the
surface of the plane, torus, or sphere. Mass
spring forces will manipulate the
remaining parts of each hair strand. The
amount of movement each hair strand has
will be determined by the stiffness and rest
length of each spring between control
points and the mass of each control point,
as well as the external forces.

2 Related Work

Some fundamental techniques were
presented to model the motion of
individual hair strands in [Anjyo et al.
1992; Kurihara et al. 1993; Daldegan et al.
1993], with each strand of hair represented
as a series of connected line segments and
the shape of the hair determined by
specifying the desired angles between
segments. Forces are applied to the control
points of the line segments to simulate the
hair motion.

To reduce the overall computation time,
strands of hair that are near each other or
move in a similar fashion, are bundled
together as a group or as a wisp [Kurihara
et al. 1993]. Using a similar philosophy,
individual strands of hair are grouped
together as “wisps” for animating long
hair, each modeled using a spring-mass
skeleton and a deformable envelope
[Plante et al. 2001]. A similar approach is
used for interactive hairstyling [Chen et al.
1999; Xu and Yang 2001]. Adaptive guide

hairs were used in [Chang et al. 2002] to
add more detail to overly interpolated
regions. Using guide strands involves
animating a few strands and the dynamics
of the remaining strands are interpolated
from these guides.'

An integrated system for modeling,
animating and rendering hair is described
in [Dald93]. It uses an interactive module
called HairStyler [Thal93] to model the
hair segments that represents the hairstyle.

3 Technique

Mass springs were used to do hair
animation. Twisted NURBS cylindrical
surfaces were used to model individual
hair strands. The hair was modeled on a
plain, a sphere, and a torus. The rest angle
range, the length of each partition, the
number of hair strands, thickness of the
hair strands, as well as, gravity, wind and
damping were dynamically user selected.
Also the user can decide if the hair should
start of as being messy or combed.

3.1 Pipeline

In the pipeline of this system, first, the
underlying shape is selected; second, the
style (messy or combed), the thickness,
length range, and the rest angle range each
partition of the hair strand are selected;
third, the springs and the particles for the
mass-spring system are created; fourth, the
external forces (gravity, wind, damping)
are selected; fifth, the control points of the
hair strands are extracted after each
iteration of the mass-spring system; finally,
the twisted NURBS cylindrical surfaces
are build and rendered.

—
-_—"

=

*

g

|f

Figure 1: Pipeline

3.2 Underlying Shapes

As seen in Figure 1 the first step in the
pipeline is the creation of the underlying
shapes. In order to model hair on a surface
one first needs a surface to model the hair
on. The three underlying shapes that are
used in this project are a torus, a sphere,
and a plain. The torus and the sphere are
modeled using NURBS surfaces. The plain
is modeled using only polygonal openGL
representation.

Figure 2: underlying shapes (a) plain, (b) sphere,
and (c) torus

3.2 Style

The user can manipulate different
aspect of the hair. The amount of hair seen
can be manipulated. If the length range of
the hair is manipulated the resulting hair
strands would be shorter or longer. If the
rest angle range is manipulated the
resulting hair strands would be straighter
or curvier. The manipulation of the
thickness will result in thinner or thicker

hair strands. Also messy or combed hair
can be selected which will result in having
the starting hair strands be randomized
individually or all together respectively.

4 Algorithm

In this section the mass-spring system,
the manipulation of external forces, the
extraction of control points, and the actual
creation of the twisted NURBS cylindrical
surfaces will be discussed.

4.1 Mass-spring system

Now the mass spring system can
actually be build. First the springs are
created and then the particles. Each
iteration of the mass-spring system is done
with a modified Euler algorithm.

Only linear springs are used here. They
are built based on the amount of hair seen,;
the rest length of the springs is based on
the length range previously selected.

After the springs are built the actual
particles are created. The particles are
divided into n particles per hair strand,
where n=8. The first particle of each hair
strand is fixed on the surface. The rest of
the particles in the hair strand are grown
outward toward the direction of the normal
of the underlying surface. The curliness
and length of each of these particles are
based on the length range and rest angle
previously selected. The mass of each
particle is set to 1. The force and velocity
vectors of every particle are set to zero.
The following is the actual algorithm of
how the particles are built.

if (nz==0) particles[i*parts+j].p.z =
randomp(restang)+particles[i*parts].p.z;

else particles[i*parts+j].p.z =
-nz*randomp(leng)+particles[i*parts+j-1].p.z;

4.2 External forces

The user selects the external force, such
as gravity, wind, and damping. The wind
and the gravity change directions every ten
iterations of the mass-spring system.

The following algorithm shows how the
forces are actually added to the internal
forces of each particle that isn’t fixed on a
surface. At first the force of each particle is
set to 0 then if the particle isn’t fixed on
the surface the wind and gravity are added
to it.

For (i=0 ... particles)
MAKEV(particles[i].f, 0.0f, 0.0f, 0.0f)
if (particles[i].fixed) continue;
ADDV(particles[i].f, wind);
particles[i].f.y +=gravity *particles[i].m;

COPY V(particles[i*parts].p , surf[k]);
MAKEV (particles[i*parts].v, 0.0f, 0.0f, 0.0f)
MAKEV (particles[i*parts].f, 0.0f, 0.0f, 0.0f)
for (j=1..parts)
MAKEV (particles[i*parts+j].v, 0.0f, 0.0f, 0.0f)
MAKEV (particles[i*parts+j].f, 0.0f, 0.0f, 0.0f)
if (nx==0) particles[i*parts+j].p.x=
randomp(restang)+particles[i*parts].p.x;
else particles[i*parts+j].p.x=
-nx*randomp(leng)+particles[i*parts+j-1].p.x;
if (ny==0) particles[i*parts+j].p.y =
randomp(restang)+particles[i*parts].p.y;
else particles[i*parts+j].p.y =
-ny*randomp(leng)+particles[i*parts+j-1].p.y;

4.3 Control points

Each individual strand of hair will be
modeled as a twisted NURBS cylindrical
surface with n control points, degree 2 and
20%20 subdivision. Each of these cylinders
contains a certain thickness and a length. A
circle determines the thickness of the
cylindrical strand. First, the control points of
that circle, which will contain the thickness of
the individual strand, are created. Then the v
knots for these circle control points are
created.

Py Pl=Fg P

Figure 3: The thickness of each strand with 9
control points.

The twisting of the hair strand is
determined by the current iteration of the

mass-spring system. The « knots are based on
how many particles that hair strand contains.
Since in this case a hair strand contains only
eight particles there are twelve u knots only.
After all the control points have been
extracted for each hair strand, that hair
strand is rendered as a twisted NURBS
cylindrical surface.

For (i=0 ... parts)
For (j=0 ... 9)
MAKEV(cp[i*9+i],
ADDV(particles[k*parts+i].p, circle))

Figure 4: The mass-spring control points on a
twisted NURBS cylindrical surface.

4.4 NURBS surfaces

A NURBS surface of degree p in the u
direction and degree ¢ in the v direction
has the form:

M:

Zsz(u)qu(V)Wz] i,j
Jj=0

1
f=l

S(u,v)="1 L=
Z ZNi,p (u)Nj,q (V)Wi,j
i=0 j=0

The {P;;} from a bi-directional control net,
the {w;;} are the weights, and the {N;,u)/}
and {N;,qu)/} are the non-rational B-spline
basis functions defined on the knot vectors:

U = 00ttty oL}
ptl p+1

V= {0,...,0,vq+1,...,vs_q_l,l,...,l}
g+l g+l

where » = nt+p+1and s = m+q+1.

5 Results
This implementation uses OpenGL and
C++ on a Windows 2000 PC. The interface

used is FLTK. It was compiled under
Microsoft Visual Studio C++. The less hair
strands the faster the rendering time for
each iteration. However, even with 400
hair strands each iteration took less than
a second. The bottleneck happens to be the
rendering of the twisted NURBS
cylindrical surfaces.

Figure 5: Messy hair on a plain in wireframe
with mass-spring control points and twisted
NURBS surfaces

Figure 6: Messy hair on a plain in wireframe
with twisted NURBS surfaces.

Figure 7: Thick, messy hair on a plain with
twisted NURBS surfaces. Figure 9:Long, curly, combed hair on a plain
with twisted NURBS surfaces.

Figure 10:Long, messy hair on a sphere with

Figure 8:Long, messy hair on a plain with ;
twisted NURBS surfaces. twisted NURBS surfaces.

Figure 11: Short, curly hair on a sphere with
twisted NURBS surfaces.
Figure 13: Short, curly hair on a torus with

twisted NURBS surfaces.

Figure 12: Curly hair on a sphere with mass-
spring control points and twisted NURBS
surfaces.

Figure 14: Curly, short hair on a sphere with
mass-spring control points and twisted NURBS
surfaces.

6 Conclusion

This paper 1 have presented a
framework for modeling hair movement
using mass-springs. This framework
supports dynamic simulation, movement,
and graphical rendering of hair and
simulates different types of hair from very
curvy to straight, from very short to very
long, from very thin to very thick, and
from very dense to bolding. It also

simulates different affects forces have on
hair from wind, gravity, and damping.
Each individual strand of hair is modeled
as a twisted NURBS cylindrical surface
with n control points.

In the future I plan to implement
collision detection and add angular mass-
springs.

]
Fin i gy 0 B e 1

Figure 15: The user interface.

7 References

1. Kelly Ward, Ming C. Lin, Joohi Lee,
Susan Fisher, and Dean Macri. Modeling
Hair Using Level-of-Detail
Representations. Computer Animation
and Social Agents, 2003.

2. Koh, C. K., and Huang, Z. 2001. A
Simple Physics Model to Animate Human
Hair Modeled in 2D Strips in Real Time.
Proceedings of Eurographics Workshop
2002, 127-138.

3. Yang Guang and Huang Zhiyong, A
Method of Human Short Hair Modeling
and Real Time Animation, IEEE, 2002

4. Tsuneya Kurihara, Ken-ichi Anjyo, and
Daniel Thalmann, Hair Animation with
Collision Detection, Models and
Techniques in Computer Animation,
Springer-Verlag, Tokyo, pp.128-138,
1993

5. Leslie Piegl and Wayne Tiller, Curve and
Surface Constructions using rational B-
splines, Computer-Aided Design, 19(9),
485-498, 1987

6. K. Anjyo, Y. Usami, and T. Kurihura. A
Simple Method For Extracting The
Natural Beauty Of Hair, SIGGRAPH
(92), pp. 111-120 (1992).

10.

11

12.

13.

14.

15.

16.

1 7NVIDIA.

W. Béhm. Insert New Knots into B-spline
Curves, Journal of Computer Aided
Design, 12 (4), pp. 199-201 (1980).

L. H. Chen, S. Saeyor, H. Dohi, and M.
Ishizuka. A System of 3D Hair Style
Synthesis Based on the Wisp Model, The
Visual Computer, 15 (4), pp. 159-170
(1999).

E. Cohen, T. Lyche, and R. Risenfeld.
Discrete B-Splines and Subdivision
Technique in Computer-Aided Geometric
Design and Computer Graphics, CGIP, 14
(2), pp- 87-111 (1980).

A. Daldegan, T. Kurihara, N. Magnenat
Thalmann, and D. Thalmann. An
Integrated System for Modeling,
Animating and Rendering Hair, Proc.
Eurographics (93), Computer Graphics
Forum, Vol.12, No3, pp.211-221 (1993).

. C. K. Koh and Z. Huang, Real-time

Animation of Human Hair Modeled in
Strips, Computer Animation and
Simulation, Springer-Verlag, pp.101-110
(2000).

R. E. Rosenblum, W E. Carlson, and I. E.
Tripp. Simulating the Structure and
Dynamics of Human Hair: Modeling,
Rendering and Animation. The Journal of
Visualization and Computer Animation, 2
(4), pp. 141-148 (1991).

N. Magnenat Thalmann and A. Daldegan.
Creating Virtual Fur and Hair Styles for
Synthetic Actors. In Communicating with
Virtual Worlds, Springer-Verlag, Tokyo,
pp. 358-370 (1993).

J. Lengyel, Real-time fur. Proc. Of
Eurographics Workshop on Rendering,
2000

J. Lengyel, E. Praun, A. Finkelstein, and
H. Hoppe, Real-time fur over arbitrary
surfaces, Proc. of ACM Symp. on
Interactive 3D Graphics, 2001

NVIDIA. Final fantasy technology demo
2001. http://www.nvidia.com 2001
Technical brief.
http://developer.nvidia.com/docs/lo/14
51/SUPP/accuview.final.pdf

